作为缓存系统都要定期清理无效数据,就需要一个主键失效和淘汰策略。
1.EXPIRE主键失效机制
在Redis当中,有生存期的key被称为volatile,
在创建缓存时,要为给定的key设置生存期,当key过期的时候(生存期为0),它可能会被删除。
(1)影响生存时间的一些操作
生存时间可以通过使用 DEL 命令来删除整个 key 来移除,或者被 SET 和 GETSET 命令覆盖原来的数据,
也就是说,修改key对应的value和使用另外相同的key和value来覆盖以后,当前数据的生存时间不同。
比如说,对一个 key 执行INCR命令,对一个列表进行LPUSH命令,或者对一个哈希表执行HSET命令,这类操作都不会修改 key 本身的生存时间。
另一方面,如果使用RENAME对一个 key 进行改名,那么改名后的 key 的生存时间和改名前一样。
RENAME命令的另一种可能是,尝试将一个带生存时间的 key 改名成另一个带生存时间的 another_key ,这时旧的 another_key (以及它的生存时间)会被删除,然后旧的 key 会改名为 another_key ,因此,新的 another_key 的生存时间也和原本的 key 一样。
使用PERSIST命令可以在不删除 key 的情况下,移除 key 的生存时间,让 key 重新成为一个persistent key 。 持久的
(2)如何更新生存时间
可以对一个已经带有生存时间的 key 执行EXPIRE命令,新指定的生存时间会取代旧的生存时间。
过期时间的精度已经被控制在1ms之内,主键失效的时间复杂度是O(1),
EXPIRE和TTL命令搭配使用,TTL可以查看key的当前生存时间
- 设置成功返回 1;
- 当 key 不存在或者不能为 key 设置生存时间时,返回 0 。
2.最大缓存配置
在 redis 中,允许用户设置最大使用内存大小
server.maxmemory
默认为0,没有指定最大缓存,如果有新的数据添加,超过最大内存,则会使redis崩溃,所以一定要设置。 redis 内存数据集大小上升到一定大小的时候,就会实行数据淘汰策略。
redis 提供 6种数据淘汰策略:
- volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
- volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
- volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
- allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
- allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
- no-enviction(驱逐):禁止驱逐数据
注意这里的6种机制,volatile和allkeys规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据, 后面的lru、ttl以及random是三种不同的淘汰策略,再加上一种no-enviction永不回收的策略。
使用策略规则:
(1)如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru。
(2)如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random。
3.失效的内部实现
Redis 删除失效主键的方法主要有两种:
消极方法(passive way),在主键被访问时如果发现它已经失效,那么就删除它
积极方法(active way),周期性地从设置了失效时间的主键中选择一部分失效的主键删除
主键具体的失效时间全部都维护在expires这个字典表中。
typedef struct redisDb {
dict *dict; //key-value
dict *expires; //维护过期key
dict *blocking_keys;
dict *ready_keys;
dict *watched_keys;
int id;
} redisDb;
4.Redis 的主键失效机制对系统性能的影响
Redis 会定期地检查设置了失效时间的主键并删除已经失效的主键,但是通过对每次处理数据库个数的限制、activeExpireCycle 函数在一秒钟内执行次数的限制、分配给 activeExpireCycle 函数CPU时间的限制、继续删除主键的失效主键数百分比的限制,Redis 已经大大降低了主键失效机制对系统整体性能的影响,但是如果在实际应用中出现大量主键在短时间内同时失效的情况还是会产生很多问题,
也就是缓存穿透的情况。
5.如何避免大量主键在同一时间同时失效造成数据库压力过大
合理的配置缓存可以增加系统的健壮性,避免缓存失效造成的事故。
1.在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
2.可以通过缓存reload机制,预先去更新缓存.
2.不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
3.做二级缓存,或者双缓存策略。A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期。
6.Memcached删除失效主键的方法与Redis有何异同?
Memcached 在删除失效主键时采用的消极方法,即 Memcached 内部不会监视主键是否失效,而是在通过 Get 访问主键时才会检查其是否已经失效。
其次,Memcached 与 Redis 在主键失效机制上的最大不同是,Memcached 不会像 Redis 那样真正地去删除失效的主键,而只是简单地将失效主键占用的空间回收。
这样当有新的数据写入到系统中时,Memcached 会优先使用那些失效主键的空间。
如果失效主键的空间用光了,Memcached 还可以通过 LRU 机制来回收那些长期得不到访问的空间,因此 Memcached 并不需要像 Redis 中那样的周期性删除操作,这也是由 Memcached 使用的内存管理机制决定的。
同时, Redis 在出现 OOM时同样可以通过配置 maxmemory-policy 这个参数来决定是否采用 LRU 机制来回收内存空间。
评论前必须登录!
注册